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Abstract. The problem of crowdion motion is formulated and analyzed as a dynamical problem of a three-
dimensional crystal lattice formed by atoms of several kinds, which interact with each other by means of
short-range pair potentials. It is explained that in order for the the crowdion excitations of the close-packed
atomic rows to be distinguishable against the background of small dynamic deformations of the crystal
as a whole, the microscopic parameters of the crystal structure must meet certain stated requirements.
The equation of motion of a crowdion in an arbitrary elastic strain field of the crystal is derived in the
Lagrangian formalism. Expressions are obtained which relate the effective mass and the rest energy of a
crowdion with the geometric and force parameters of the crystal lattice.

PACS. 63.20.Ry Anharmonic lattice modes

1 Introduction

Many rather complex crystal structures contain close-
packed atomic rows relatively weakly coupled with their
surrounding environment. An intrinsic interstitial atom
in such a row forms a specific configuration – a smeared
clump called a crowdion, and the vacancy also becomes de-
localized, forming a smeared rarefaction region that can
be called an anticrowdion.

Crowdions can play an important role in the dynamics
and kinetics of radiation defects, in diffusion processes,
and in several other inelastic deformation phenomena in
crystals [1–7].

For a qualitative description of the basic properties
of a crowdion, the Frenkel–Kontorova model of a one-
dimensional crystal is widely used in the physics of crys-
tals. This model is a chain of mutually strongly interacting
atoms which undergoes one-dimensional motion in a rela-
tively weak static periodic potential [8]. Various aspects of
the nonlinear dynamics in the Frenkel–Kontorova model
are discussed in a recent review [9].

However, a discussion of the question of the relation-
ship between the properties of a crowdion in a three-
dimensional deformable crystal and the properties of
a soliton (dislocation) in the Frenkel–Kontorova model
meets with certain complexities [10]. It it not at all clear
whether it is possible to distinguish a crowdion excitation
from the other excitations of the crystal: free harmonic
vibrations (phonons) or forced deformations of the crystal
lattice.
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A special discussion and analysis is warranted for the
problem of deriving the equation of motion of a crowdion
and describing the interaction of a crowdion with dynamic
and static deformations created by other defects or exci-
tations of the crystal and by external forces.

In this paper we formulate and analyze the problem
of crowdion motion as a dynamical problem of a three-
dimensional crystal lattice. We consider a rather general
case of crystal structure, formed by atoms of several differ-
ent kinds, interacting with one another by means of short-
ranged pair potentials. We formulate the requirements on
the parameters of the crystal geometry and interatomic
interaction which permit one to distinguish the crowdion
excitations of the close-packed atomic rows against the
background of small dynamic deformations of the crystal
as a whole. We obtain expressions relating the self-energy
and the effective mass of a crowdion with the microscopic
parameters of the crystal. We derive an equation of motion
for the center of a crowdion in an arbitrary elastic strain
field of the crystal. In this work we follow the presentation
in our recent work [11].

2 Statement of the model, the dynamical
variables, and the Lagrangian function

Let us consider a complex multiatomic crystal lattice in
which a close-packed row of identical atoms can be iden-
tified. The chemically different species of atoms are enu-
merated by an index α, and we assume for the sake of
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definiteness that the atoms of the distinguished row have
index α = 1. The spatial orientation of the distinguished
atomic row and the period of translations within it are
specified by the vector b∗, while the vector of translations
of the crystal in this direction is denoted by b; in com-
plex crystal structures these vectors can differ in modulus.
The equilibrium positions of the atoms in the ideal crystal
structure are specified by a set of vectors R, and we sep-
arate it into sets of vectors of two types: R = {ρ,R(α)},
where ρ and R(α) are, respectively, the equilibrium po-
sitions of the atoms of the distinguished row and of the
crystal matrix surrounding it. The origin of the coordinate
system for the vectors ρ and R(α) is conveniently chosen
to lie at one of the atoms of the distinguished row, that for
which the energy of coupling with the lattice is maximum.

We assume that the interatomic interaction in the crys-
tal is described by a set of short-ranged pair potentials
Uαα′(r− r′) (r and r′ are the coordinates of two arbitrary
atoms), and each individual atom with coordinate r can
also be acted on by time-varying external forces, which
correspond to potentials U

(e)
α (r, t).

The atomic displacements η(R, t) from the equilibrium
positions in the ideal crystal are written in the form

η(R, t) = u(R, t)

+
bz(ρ, t)

b∗
[b∗ + u(ρ, t) − u(ρ − b∗, t)]δRρ.

(1)

Here δik is the Kronecker delta; u(R, t) are arbitrary
small displacements satisfying the condition |u(R, t) −
u(R′, t)| � |R−R′|; z stands for additional dimensionless
displacements describing the propagation of a crowdion
excitation along the distinguished atomic row R = ρ. The
nucleation and motion of a crowdion are accompanied by
changes in the dimensionless displacement z by an amount
|z| ≤ 1.

We write a general expression for the Lagrangian of
the problem in the form

L =
1
2

∑
α,R(α)

mα[u̇(R(α), t)]2 +
1
2

∑
ρ

m1[η̇(ρ, t)]2

−1
2

∑
α,R(α)

∑
α′,R(α′)

Uαα′ [R(α) − R(α′) + u(R(α), t)

−u(R(α′), t)] − 1
2

∑
ρ

∑
ρ′

U11[ρ − ρ′ + η(ρ, t)

−η(ρ′, t)] −
∑
ρ

∑
α,R(α)

U1α[ρ − R(α) + η(ρ, t)

−u(R(α), t)] −
∑

α,R(α)

U (e)
α [R(α) + u(R(α), t), t]

−
∑
ρ

U
(e)
1 [ρ + η(ρ, t), t]. (2)

3 Simplified Lagrangian

Let us begin by discussing the main approximation of
crowdion theory, without the use of which it would be
altogether impossible to introduce correctly the concept
of a crowdion excitation: the qualitative assumption that
the energy of interaction of the atoms within the distin-
guished row (the fourth term in (2)) is large compared
to the energy of interaction of this row with the external
matrix (the fifth term in (2)). In our model this postulate
allows us to assume that, like the elastic strains of the
crystal, the crowdion deformations are also small, i.e., we
have the two simultaneous inequalities:

|u(R, t) − u(R′, t)| � |R − R′|,
b∗|z(ρ, t) − z(ρ′, t)| � |ρ − ρ′|. (3)

Satisfaction of inequalities (3), as we know, allows one
to pass from a discrete (lattice) to a continuum approx-
imation in the description of the dynamical processes or
static deformations in a crystal, by replacing the finite
differences of the displacements by derivatives:

ui(R, t) − ui(R′, t) = (Rk − R′
k)uik(R, t),

uik(R, t) =
∂ui(R, t)

∂Rk
;

z(ρ, t) − z(ρ′, t) = (ρi − ρ′i)νiz
′(ρ, t),

z′ ≡ ∂

∂x
z, ρ = νx. (4)

Here uik(R, t) is the tensor of elastic distortions of the
crystal, b∗z′ is the local crowdion deformation of the dis-
tinguished atomic row, x is the axis which is parallel to
the distinguished close-packed row of atoms, and ν is the
unit vector in the direction of that row; summation over
repeated coordinate indices is implied.

The short-range character of the interatomic potentials
and the smallness of the deformations allow us to represent
the Lagrangian (2) in the form of a Taylor series expansion
in the derivatives uik, z′, u̇i, and ż or the finite differences
corresponding to them.

Expanding expression (2) in the derivatives uik, z′, u̇i,
and ż to terms of second order, taking into account the
consequences of the translational symmetry of the crystal,
and regrouping the terms for our future convenience, we
obtain

L =
1
2

∑
α,R

mα[u̇(R, t)]2 − 1
2

∑
α,R

∑
α′,R′

A
(αα′)
ik (R − R′)

× ui(R, t)uk(R′, t) −
∑
α,R

U (e)
α [R + u(R, t), t]

+
1
2

∑
ρ

{m1b
2[ż(ρ, t)]2 − wb2[z′(ρ, t)]2 − 2Φ[z(ρ, t)]}

+
∑
ρ

{m1biu̇i(ρ, t)ż(ρ, t) − bwikuik(ρ, t)z′(ρ, t)

− uik(ρ, t)Φik[z(ρ, t)] + biF
(e1)
i [ρ + u(R, t), t]z(ρ, t)}.

(5)
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In writing expression (5) we have used the following
notation:

A
(αα′)
ik (R) = −∂2Uαα′(R)

∂Ri∂Rk
,

w = −1
2

∑
ρ

A
(11)
ik (ρ)ρiρk,

wik = −1
2

∑
ρ

A
(11)
ni (ρ)ρnρk,

Φ(z) =
∑

α,R(α)

[U1α(R(α) + bz) − U1α(R(α))],

Φik(z) =
∑

α,R(α)

[
∂U1α(R(α) + bz)

∂(R(α)
i )

(R(α)
k + bkz)

−∂U1α(R(α))

∂R
(α)
i

R
(α)
k

]
· (6)

4 Crowdion in a rigid crystal matrix

As a zeroth approximation of perturbation theory it is
natural to treat the crowdion as a topological soliton on
the distinguished row of atoms in the absence of external
forces (F(eα)(r) ≡ 0), assuming that the crystal matrix is
absolutely rigid (u(R, t) ≡ 0). This approximation corre-
sponds to the Lagrangian

L0 =
1
2

∑
ρ

[m1b
2(ż)2 − wb2(z′)2 − 2Φ(z)] (7)

and the equation of motion that follows from it:

m1b
2z̈ − wb2z′′ +

d
dz

Φ(z) = 0. (8)

The topological soliton of interest is a solution of equa-
tion (8) in the form z(νx, t) = zs[ν(x − xs)] (xs = vst,
vs = const.), which satisfies the following boundary con-
ditions at the ends of the atomic row:

zs(−∞) ≡ 0, zs(∞) = s, z′s(±∞) ≡ 0. (9)

The symbol s = ±1 denotes the sign of the soliton (crow-
dion): the value s = 1 corresponds to a delocalized va-
cancy, and s = −1 to a delocalized interstitial in the
atomic row.

We easily obtain the asymptotic expressions for the
displacements zs[ν(x − xs)] for the slow crowdion:

szs[ν(x − xs)] =

{
1
2 exp(x−xs

λs
), x < xs − λs;

1 − 1
2 exp(−x−xs

λs
), x > xs + λs,

λs = b

(
w

κ

)1/2

, κ =
∂2Φ(z)

∂z2

∣∣∣∣∣
z=n=0,±1,±2,...

. (10)

The parameter λs has the meaning of the half-width of
the crowdion: the relative local deformation of the atomic

row, b∗z′s[ν(x−xs)] is appreciably different from zero only
near its center, on an interval xs ± λs, and reaches its
maximum value at the center of the crowdion:

max|b∗z′s| =
b∗

λs
=

b∗

b

(
κ

w

)1/2

.

The additional energy of the atomic row due to the
appearance in it of a crowdion wave zs[ν(x−xs)] = zs(ρ−
ρs), where ρs = νxs = νvst, is given by

E0 =
1
2
ms0v

2
s + εs0;

εs0 =
b

b∗
∫ 1

0

[2wΦ(z)]1/2dz, ms0 = m1
εs0

w
· (11)

The parameters εs0 and ms0 have the meaning of the self-
energy and the effective mass of the crowdion, and the
center of the crowdion can be treated as a pseudoparticle
endowed with those properties. This equation coincides
with equation (10) in §43 of the book [12].

5 Crowdion as a source of elastic fields

We shall assume that the interaction of such a crowdion
with a deformable crystal matrix and a system of suffi-
ciently weak external forces preserves the soliton proper-
ties of the crowdion excitation but can lead to changes in
the shape of the crowdion and disrupt the steady motion
of its center, i.e., it can lead to a change in the veloc-
ity vs of the crowdion during its motion. This assump-
tion allows us to consider the coordinate of the center of
the crowdion to be some, in general nonlinear, function
of time xs(t) and to consider, in addition to the elastic
displacements u(R, t), velocities u̇(R, t), and distortions
uik(R, t), the functions xs(t) and vs(t) = ẋs(t) as dynam-
ical variables of the crystal. The formal substitution of the
soliton z = zs[ρ− ρs(t)] described in the previous section
into the function (5) converts it to a function of the set of
dynamical variables indicated above:

L = Lcs{u(R, t), u̇(R, t), uik(R, t), xs(t), vs(t)}.
The expression thus obtained will be considered as the

Lagrangian of a crystal containing a crowdion and will de-
termine the combined space–time evolution of the elastic
displacements of the atoms of the crystal u(R, t) and of
the crowdion center xs(t).

Substituting z = zs[ρ − ρs(t)] into equation (5), we
obtain

mαüi(R, t) +
∑

α′,R′
A

(αα′)
ik (R − R′)uk(R′, t)

= F
(eα)
i [R + u(R, t), t] + F

(s)
i (R, t), (12)

F
(s)
i = δRρ

{
m1biv̇sz

′
s(ρ − ρs) +

∂

∂ρk
Φikzs(ρ − ρs)]

+bwik
∂

∂ρk
z′s(ρ − ρs)

}
· (13)
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The long-wavelength character of the forces F(eα) and
the relatively small values of the phonon and crowdion
displacements allow us to assume that F(eα) ≈ F(eα)(R+
u(e)(R, t), t). In this approximation the general solution of
equation (12) can be written in the form of a superposition
of three types of displacements:

u = u(ph) + u(e) + u(s). (14)

Here u(ph) are the free vibrations of the crystal (acoustical
and optical phonons), u(e) are the displacements under
the influence of the external forces F(eα), and u(s) are the
displacements arising as a result of the presence of the
crowdion in the crystal.

An explicit relation between these displacements
and the coordinate and velocity of the center of the
crowdion can be obtained at distances |R − ρs| � λs,
taking into account the exponential localization of the
functions z′s(ρ − ρs) and Φik[zs(ρ − ρs)] on the 0x axis
around the center of the crowdion ρs (see the asymptotic
expressions (10) and the smooth (power-law) character of
the coordinate dependence of the Green function and its
derivative:

u
(s)
i (R, t) = qsm1vkG

(α1)
ik (R − ρs)v̇s

+(qswkn + ϕkn)
∂

∂Rn
G

(α1)
ik (R − ρs),

|R − ρs| � λs; (15)

qs =
sb

b∗
= b

∑
ρ

z′s(ρ), ϕik =
bw1/2

b∗

∫ 1

0

Φik(z)√
2Φ(z)

dz.

6 Crowdion equation of motion

We consider a crowdion as a particle whose motion in
the bulk of the crystal can be described by the dynami-
cal variables ρs = νxs(t) and ρ̇s = νvs. We assume that
the crystal contains free vibrations (acoustical and opti-
cal phonons) U(ph)(R, t) and driven displacements excited
by external forces, u(e)(R, t), and we treat these fields
as specified functions of the coordinates and time. Sub-
stituting the expression z = zs(ρ − ρs), the general ex-
pression for the displacement fields (14), and the expres-
sion for the displacement field created by the crowdion
into the Lagrangian (5), we can separate off from it the
last two terms as a separate unit Ls, which will depend
on the dynamical variables of the crowdion and will in-
clude the external fields and forces as parameters. Some
of the terms of this separate unit can be interpreted as
the energy of interaction of a crowdion with the external
fields, while the terms due to the displacements u(s) de-
scribe its self-effect. The quantity Ls assumes the usual
form of the Lagrangian of a particle in classical mechan-
ics, Ls = Ls{xs, vs;u(ph) +u(e),F(e1)}, if it is constructed
in the quadratic approximation in the velocities vs.

Taking into account the self-effect of the crowdion
through a crystal having a finite elastic compliance leads
to a renormalization of the bare values of the effective
mass ms0 and rest energy εs0:

Ls =
1
2
msv

2
s − εs −

∑
ρ

{m1vsbi[u̇
(ph)
i (ρ, t) + u̇

(e)
i (ρ, t)]

×z′s(ρ − ρs) + [u(ph)
ik (ρ, t) + u

(e)
ik (ρ, t)]

×[bwikz′s(ρ − ρs) + Φik(zs)]

+biF
(e)
i [ρ + u(e)(ρ, t), t]zs(ρ, t)}. (16)

ms = ms0 + 2m1b
∑
ρ,ρ′

∂2G11
ik (ρ − ρ′)

∂ρn∂ρm
νiνmz′s(ρ)

×{bwknz′s(ρ
′) + Φkn[zs(ρ′)]}; (17)

εs = εs0 +
∑
ρ,ρ′

∂2G11
ik (ρ − ρ′)

∂ρn∂ρm
{bwimz′s(ρ)

+Φim[zs(ρ)]}{bwknz′s(ρ
′) + Φkn[zs(ρ′)]}. (18)

In going to the Newtonian form of the equation of
motion it is helpful to take into account the exponen-
tially “sharp” character of the functions z′s(ρ − ρs) and
Φik[z′s(ρ − ρs)] against the background of the smooth co-
ordinate dependences of the external fields, as this was
done in the derivation formula (15). This lets us take the
values of the external fields at the point ρ = ρs out from
under the summation over ρ. As a result, the equation of
motion of the crowdion takes the final form

msv̇s = −qsνiF
(e1)
i [ρs + u(e)(ρs, t), t]

+qsm1νi
∂2

∂t2
[u(ph)

i (ρs, t) + u
(e)
i (ρs, t)] − (qswik)

+ϕik
∂

∂xs
[u(ph)

ik (ρs, t) + u
(e)
ik (ρs, t)]. (19)

Expressions for the constants of the lattice–crowdion in-
teraction wik and ϕik are given in (6) and (15).

Let us conclude with the discussion of another impor-
tant question that has direct bearing on the dynamical
properties of a crowdion. Taking the discreteness into ac-
count leads to a correction to the crowdion energy which
is periodic in the coordinate xs = vst and is analogous
to the Peierls energy for a dislocation [9]. The problem
of crowdion mobility in such potential relief appears. The
question of a quantum tunneling of the crowdion through
barriers of this relief and appearance of a band spectrum
is of a special interest [12–17].
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